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Abstract

Thermochromic liquid crystal (TLC) is used extensively as an experimental tool to determine heat transfer coefficients. In a

transient experiment, if the time at which the TLC changes colour is known, then h, the heat transfer coefficient, can be found from

the solution of the so-called semi-infinite-plate problem. If Taw, the adiabatic-wall temperature, is unknown, then two narrow-band

TLCs can be used to determine both h and Taw. In this paper, an uncertainty analysis is used to calculate Ph, the uncertainty in h, and

PTaw , the uncertainty in Taw (when Taw is unknown), in terms of the random uncertainties in the measured temperatures. Computed

values, obtained using a Monte Carlo method, are in good agreement with the uncertainties obtained from the analysis. It is also

shown how the uncertainties Ph and PTaw can be minimised by selecting the appropriate ranges of TLC. Conversely, a poor choice of
TLC can result in large values of these uncertainties. � 2002 Published by Elsevier Science Inc.
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1. Introduction

Thermochromic liquid crystal (TLC) is now widely
used to determine heat transfer coefficients: see, for ex-
ample, Ireland and Jones (1985), Jones and Hippensteele
(1988), Kasagi et al. (1989), Camci et al. (1991) and
Baughn (1995). TLC has the property that its colour
changes over a defined range of temperatures: for nar-
row-band TLC, the transitional temperature range is
around 1 �C, and the typical uncertainty in measuring
this temperature is approximately 0.1 �C; for wide-band
TLC, the range can be 10 �C or greater, and the un-
certainty is correspondingly larger than for the narrow-
band.

The heat transfer coefficient, h, is defined here as

h ¼ qw
Tw � Taw

; ð1:1Þ

where qw is the heat flux from the surface to the fluid, Tw
is the surface, or wall, temperature, and Taw is the adi-

abatic-wall temperature. For some cases, Taw is known
or assumed. For example, for flow over a flat plate, it is
often assumed that Taw is equal to the total temperature
of the free-stream. When Taw is unknown, it can be
found experimentally, as discussed below.

Heat transfer experiments using TLC are either
steady-state or transient, and only the latter case is
considered here. For example, a test piece, made from a
poor thermal conductor such as acrylic plastic, is coated
with narrow-band TLC, which has been calibrated
against temperature. In a typical experiment in a wind
tunnel, the test piece is subjected to a step-change in air
temperature. As soon as the TLC reaches its ‘‘transition
temperature’’, it will change colour: the higher the heat
transfer coefficient, the shorter the time to reach tran-
sition. A video-recording of the surface would reveal a
coloured contour, related to the transition temperature,
that moves in time from regions of high to low h.
Knowing the initial temperature, the transition tem-
perature and the time required to reach transition,
contours of h can then be calculated from the recorded
contours of temperature.

The usual way of calculating h for the transient
experiment is from the step-change solution of the
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so-called semi-infinite-plate problem. This is the solution
of the one-dimensional Fourier equation for the case of
an infinitely thick plate, initially at a uniform tempera-
ture, Ti, exposed to a step-change in the temperature of
the adjacent fluid. If Taw is already known, then as
shown in Section 2, it is only necessary to know the
surface temperature, Tw, and the time, t, in order to
evaluate h. For this case, a single narrow-band TLC
provides the required value of Tw. If, however, Taw is
unknown, then two narrow-band TLCs, with respective
transition temperatures of Tw1 and Tw2, say, together
with the associated times, t1 and t2, enable both h and
Taw to be evaluated, as shown in Section 3.

In practice, the test piece has a finite thickness, d say.
The penetration time, s, is defined as the time taken for
the back surface of the plate to change by a given
amount. For the case where the front surface has a step-
change from Ti to Tw, then according to Schultz and
Jones (1973)

s ¼ 0:10d2
qc
k
; ð1:2Þ

which corresponds to the time at which the change in the
temperature of the back surface is 0.01 (Tw � Ti). For the
case of a step-change in the fluid temperature, Eq. (1.2)
provides a conservative estimate for s. For experiments
in which t < s, the semi-infinite assumption is taken to
be valid.

Any uncertainties in the measured temperatures will
obviously give rise to uncertainties in the calculated
values of h. If Taw is known, what is the value of Tw
(which is fixed by the choice of TLC) that will minimise

the uncertainty in h? If Taw and h are both unknown,
what are the values of Tw1 and Tw2 that will minimise
their uncertainties? These are the questions addressed in
this paper, and their answers should enable experi-
menters to quantify, and to minimise, the experimental
uncertainties in h and Taw.

Section 2 is concerned with the calculation of the
uncertainty in h when Taw is known, and Sections 3 and 4
respectively consider calculating and minimising the
uncertainties when both h and Taw are unknown. The
conclusions are given in Section 5, and Appendix A
contains the results of Coleman and Steele (1999) that
are used in the uncertainty analysis presented below.

It should be noted that the results presented here are
valid only for random uncertainties and it is implicitly
assumed that there are no correlated biases between the
temperatures. Coleman and Steele also discuss biases or
systematic uncertainties, for which the methods used
below should still be valid.

The analysis also implicitly assumes that h is invari-
ant with time and it is therefore invalid for those
problems in which h varies with either the magnitude or
the distribution of surface temperature. In free convec-
tion, h depends on the magnitude of the difference be-
tween the temperatures of the surface and the fluid. In
some transient forced convection problems, the chang-
ing thermal boundary conditions can affect the value of
h (see Butler and Baughn, 1996). In neither of these cases
is the analysis strictly valid, but the results may still be
useful as a guide to the selection of TLC and the esti-
mation of uncertainties in h.

Nomenclature

c specific heat of plate
d thickness of plate
f ðaÞ solution of semi-infinite-plate problem
h heat transfer coefficient
k thermal conductivity of plate
N number of data in sample
r experimental result
s standard deviation
t time
P uncertainty (95% confidence estimate)
qw heat flux from surface-to-fluid
T temperature of plate
Taw adiabatic-wall temperature
Ti initial temperature of plate
Tw surface temperature of plate
Xi measured variable
a nondimensional heat transfer coefficient

(h
ffiffiffiffiffiffiffi
t=j

p
)

bi derivative of r (or=oXi)
j thermal property of plate (qck)
haw adiabatic temperature difference (Taw � Ti)

hw temperature difference (Tw � Ti)
H nondimensional temperature (hw=haw)
q density of plate
s penetration time
U amplification parameter for uncertainties

Subscripts
h with reference to heat transfer coefficient
min minimum value
opt optimum value
p individual value
t with reference to time
T value for special case where uncertainties in

measured temperatures are equal to each
other

Taw with reference to adiabatic-wall temperature
Ti with reference to initial temperature
Tw with reference to surface temperature
a with reference to a
haw with reference to haw
H with reference to H
j with reference to j
1,2 values at times t1, t2
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2. Uncertainty in h when Taw is known

For some heat transfer problems, the adiabatic-wall
temperature is known before the experiment is under-
taken. Under these conditions, if Ti, the initial temper-
ature of the plate at time t ¼ 0, and Tw, the surface
temperature of the plate at time t, are known, then h can
be readily found.

It is convenient to define

H ¼ hw
haw

; ð2:1Þ

where

hw ¼ Tw � Ti ð2:2Þ
and

haw ¼ Taw � Ti: ð2:3Þ
The solution of the semi-infinite-plate problem for a
step-change in fluid temperature (see Schultz and Jones,
1973) can then be written as

H ¼ f ðaÞ; ð2:4Þ
where

f ðaÞ ¼ 1� ea2 erfcðaÞ ð2:5Þ
and

a ¼ h

ffiffiffi
t
j

r
: ð2:6Þ

Knowing H from the temperature measurements, a can
be calculated using Eq. (2.5); knowing t, h can then be
found from Eq. (2.6).

As Taw and Ti are usually fixed at the outset of the
experiment, the choice of TLC used to measure Tw de-
termines the value of H. As shown below, this also fixes
the uncertainty in the measured values of h, but there is
an optimum value of H that minimises this uncertainty.

If the random uncertainties in Tw, Ti and Taw are in-
dependent of each other (as is usually the case in prac-
tice), the uncertainty in a can be found, with the aid of
Appendix A, from

P 2
a ¼ da

dH

� �2

P 2
H; ð2:7Þ

where

P 2
H ¼ oH

oTw

� �2

P 2
Tw

þ oH
oTi

� �2

P 2
Ti
þ oH

oTaw

� �2

P 2
Taw

: ð2:8Þ

Using Eqs. (2.1)–(2.3), it follows that:

Pa

a

� �2

¼ 1

af 0ðaÞ

� �2 PTw
haw

� �2
(

þ 1ð � f að ÞÞ2 PTi
haw

� �2

þ f 2 að Þ PTaw
haw

� �2
)
;

ð2:9Þ

where

f 0ðaÞ ¼ df
da

¼ 2½aðf ðaÞ � 1Þ þ p�1=2�: ð2:10Þ

The uncertainty in h can then be found from Eq. (2.6)
such that

Ph
h

� �2

¼ Pa

a

� �2

þ 1

2

Pt
t

� �2

þ 1

2

Pj

j

� �2

: ð2:11Þ

Consider the special case where the uncertainties in t and
j are negligible, compared with Ph, and where PTw ¼
PTi ¼ PTaw ¼ PT , say. Eq. (2.9) then simplifies to

Ph
h

� �
¼ Uh

PT
haw

� �
; ð2:12Þ

where

Uh ¼
2 1� f að Þ þ f 2 að Þð Þf g1=2

af 0 að Þ : ð2:13Þ

Uh can be regarded as an amplification parameter that
relates Ph=h to PT=haw, and the variation of Uh with H is
shown in Fig. 1. Also shown are the computed values
obtained using a Monte Carlo method in which random
noise was added to Tw; Ti and Taw, and the values of h
were determined using Eq. (2.5). A total of N ¼ 10; 000
values was used to compute the average value of h and
its uncertainty, Ph, and for the results shown in Fig. 1,
PT ¼ 0:2 �C and haw ¼ 40 �C, which are typical of the
values used in experiments with TLC. The good agree-
ment between the computed results and Eq. (2.12) gives
confidence in the uncertainty analysis used here.

From Fig. 1, it can be seen that the minimum value of
Uh ðUh;min � 4:4Þ occurs at an optimum value of
H ðHopt � 0:52Þ. It is also interesting to note that Uh 6 5
for 0:3 < H < 0:7, which provides good latitude for the
experimenter: for PT =haw ¼ 0:5% (the value chosen in
the numerical simulation), Ph=h � 2:5% when Uh ¼ 5,
which most experimenters would regard as acceptable.

It should be stressed that the above special case only
applies if the uncertainties in the measured temperatures
are all equal, which is not generally true. For other
cases, Eq. (2.9) should be used to generate the appro-
priate amplification parameter. This would then allow
Hopt and the appropriate value of Ph=h to be determined.
(Good agreement between Eq. (2.9) and results obtained
by the Monte Carlo method has also been found by the
authors for cases where the uncertainties in temperature
are unequal.)

3. Calculating the uncertainties in h and Taw

If both h and Taw are unknown before the experiment
is conducted, they can be determined using two liquid
crystals to measure temperatures Tw1 and Tw2, say, at
respective times of t1 and t2. Using the definition given in
Eq. (2.1), these give rise to H1 and H2 such that

Y. Yan, J.M. Owen / Int. J. Heat and Fluid Flow 23 (2002) 29–35 31



H1

H2

¼ Tw1 � Ti
Tw2 � Ti

: ð3:1Þ

Using Eq. (2.4),

H1

H2

¼ f a1ð Þ
f a2ð Þ ; ð3:2Þ

where

a1 ¼ h

ffiffiffiffi
t1
j

r
ð3:3Þ

and

a2 ¼ h

ffiffiffiffi
t2
j

r
: ð3:4Þ

Hence, as H1 and H2 are known, h and Taw can be
readily determined, and the uncertainties in h and Taw
can be calculated (see Yan and Owen, 2000). The rela-
tive uncertainties in h and Taw can be expressed as

Ph
h

� �2

¼ U�1
1

�
� U�1

2

	�2
H�2

1

PTw1
haw

� �2
(

þ H�2
2

PTw2
haw

� �2

þ H�1
1

�
� H�1

2

	2 PTi
haw

� �2
)

ð3:5Þ

and

PTaw
haw

� �2

¼ U2ð � U1Þ�2 U2
1H

�2
1

PTw1
haw

� �2
(

þ U2
2H

�2
2

PTw2
haw

� �2

þ U2 H�1
2

�

� 1

	
� U1 H�1

1

�
� 1

	�2 PTi
haw

� �2
)
; ð3:6Þ

where

U1 ¼
f að Þ

af 0 að Þ

� �
1

ð3:7aÞ

and

U2 ¼
f að Þ

af 0 að Þ

� �
2

: ð3:7bÞ

The minimisation of these uncertainties is discussed
below.

4. Minimising the uncertainties in h and Taw

For simplicity, consider the special case where
PTw1 ¼ PTw2 ¼ PTi ¼ PT , say. Eqs. (3.5) and (3.6) then re-
duce to

Ph
h
¼ Uh

PT
Haw

; ð4:1aÞ

where

Uh ¼ 2 U�1
1

�n
� U�1

2

	�2
H�2

1

�
þ H�2

2 � H�1
1 H�1

2

	o1=2

ð4:1bÞ
and

PTaw
Haw

¼ UTaw
PT

Haw

; ð4:2aÞ

where

Fig. 1. Variation of Uh with H when Taw is known. (———) Eq. (2.13); (�) computed values.
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UTaw ¼ jU2 � U1j�1 U2
1H

�2
1

n
þ U2

2H
�2
2

þ U2 H�1
2

�

� 1

	
� U1 H�1

1

�
� 1

	�2o1=2

: ð4:2bÞ

Uh and UTaw are amplification parameters: they respec-
tively relate the uncertainties in the derived quantities
(Ph=h and PTaw=haw) to the uncertainties in the measured
temperatures (PT=haw).

Fig. 2 shows the effect of H2 on the variation of Ph=h
with H1 according to Eqs. (4.1a) and (4.1b). Computed
values, obtained using the Monte Carlo method de-
scribed in Section 2, are also shown, and the good
agreement between Eqs. (4.1a) and (4.1b) and the
computations gives confidence in the uncertainty anal-
ysis used here.

It can be seen from Fig. 2 that Ph=h tends to decrease
as H2 increases, and for any value of H2 there is an
optimum value of H1 ðH1 ¼ H1;opt, say) for which Ph=h
is a minimum. The locus of the minima is also shown,
and

H1;opt � 0:52H2: ð4:3Þ

It is also interesting to note that, as H2 tends to unity,
the variation of Ph=h with H1 is similar to that of Ph=h
with H shown in Fig. 1. That is, Eq. (2.12) provides a
lower bound for the amplification parameter, and
Uh;min � 4:4. A poor choice of H1 and H2 can, however,
result in values of Uh an order of magnitude greater than
this minimum value, as Fig. 2 shows. The danger for the
unwary experimenter is clear to see!

Fig. 3 shows the effect of H2 on the variation of
PTaw=Taw with H1 according to Eq. (4.2a) and (4.2b), and
the agreement between the results from this equation
and the computations is good. As for Ph=h, PTaw=haw
tends to decrease as H2 increases, and there is an opti-
mum value for which PTaw=haw is a minimum. This op-
timum value can be approximated by

H1;opt � 0:48H2: ð4:4Þ
It can also be seen from Figs. 2 and 3 that the minimum
values of Ph=h are significantly greater than those of
PTaw=haw.

For experimenters, the best strategy is to choose TLC
with transition temperatures that make H2 as large as
praticable and make H1 � 0:5H2. However, the maxi-
mum value of H2 may be limited in practice by the need
to ensure that the experimental time, t, does not exceed
the penetration time, s (see Section 1).

In order to choose H1 and H2 before the experiment
is conducted, it is necessary to have an estimate of the
unknown Taw. In practice, Taw will be related to the
total temperature of the fluid entering the system and,
in most experiments, it is possible to control and to
measure this temperature. The magnitude of the un-
certainties is therefore in the gift of the experimenter: a
well-designed experiment will minimise these uncer-
tainties.

It should be remembered that the results presented in
this section are only valid when PTw1 ¼ PTw2 ¼ PTi . When
this is not the case, Eqs. (3.5) and (3.6) can be used to
produce results similar to those shown in Figs. 2 and 3.

Fig. 2. Effect of H2 on variation of Uh with H1 when Taw is unknown. (———) Eqs. (4.1a) and (4.1b); (- - -) locus of minima; (�) computed values.
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5. Conclusions

Using the step-change solution of Fourier’s equation
for a semi-infinite plate, analytical expressions have been
derived for Ph, the uncertainty in h, and for PTaw , the
uncertainty in Taw (when Taw is unknown), in terms of
the random uncertainties in the measured temperatures.
These expressions are in good agreement with computed
values obtained using a Monte Carlo method.

When Taw is known, there is an optimum value of the
nondimensional temperature, H, that minimises Ph. For
the special case where the uncertainties in the measured
temperatures, PT , are equal to each other, Hopt � 0:5.
For this case, the amplification parameter (or ratio of
Ph=h to PT =haw) is approximately 4.4.

When Taw is unknown, two values of H (H1 and H2)
are needed to determine h and Taw. For any value of
H2, there is an optimum value of H1 that minimises the
uncertainty in h. For the special case where the un-
certainties in the measured temperatures are equal,
H1;opt � 0:5H2, and Ph=h and PTaw=haw decrease as H2

increases. The advice to experimenters is to make H2 as
large as practicable and to choose the optimum value
of H1 to minimise Ph; a poor choice of H1 and H2

could result in very large uncertainties in Ph=h and
PTaw=haw.

Although the results presented here are valid only for
random uncertainties in the measured temperatures,
Coleman and Steele (1999) provide formulae for biases
or systematic uncertainties. It should therefore be pos-
sible to use the methods in this paper to determine the

uncertainties in h and Taw resulting from biases in the
measured temperatures.
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Appendix A. Estimating random uncertainties

The following has been extracted from Coleman and
Steele (1999) for the case of large samples of data
(N P 10).

Consider the case of an experimental result, r, which
is a function of J measured variables, Xi such that

r ¼ rðX1;X2; . . . ;XJ Þ: ðA:1Þ
The random uncertainty (precision limit) of the result is
given by

P 2
r ¼

XJ

i¼1
b2
i Pið Þ2 þ 2

XJ�1
i¼1

XJ

k¼iþ1
bibkPik; ðA:2Þ

where

bi ¼
or
oXi

ðA:3Þ

Fig. 3. Effect of H2 on variation of UTaw with H1. (———) Eq. (4.2a) and (4.2b); (- - -) locus of minima; (�) computed values.
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Pi is the 95% confidence estimate of the random uncer-
tainty in Xi, and is given by

P 2
i ¼ 4S2i ; ðA:4Þ
where the variance, S2i , is found from

S2i ¼
1

N � 1

XN
p¼1

Xi;p

�
� X i

	2 ðA:5Þ

and X i is the mean value of the N samples of Xi.
Pik is the 95% confidence estimate of the covariance of

Xi and Xk given by

Pik ¼ 4Sik; ðA:6Þ
where

Sik ¼
1

N � 1

XN
p¼1

Xi;p

�
� X i

	
Xk;p

�
� X k

	
: ðA:7Þ
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